

GEOTECHNICAL INVESTIGATION REPORT

33 – 35 Church Street, Randwick NSW

PREPARED FOR SIEW LENG KIANG REPORT ID: G21095RAN-R01F REV 2

Date: 14th May 2024 Revision No. 2

Client:

Siew Leng Kiang C/- Couvaras Architects Level 1, 95 Cronulla Street Cronulla NSW 2230

Author: S. McCormack (B.E. Hons) - CEnvP, MIEAust, CPEng, NER (geotechnical, civil, environmental) Class 2 Buildings Professional Engineers Registration PRE0000623

Field Engineer / Scientist: M. Kilham and Zachary Ziesel

 PHONE +61 (0) 2 9420 3361
 MOBILE +61 (0) 431 480 980
 EMAIL info@geoenvironmental.com.au

 ADDRESS
 unit 2 / 5-7 malta street fairfield east nsw 2165
 WEB
 www.geoenvironmental.com.au

TABLE OF CONTENTS

1	PROJECT INFORMATION	4
1.1	INTRODUCTION AND OBJECTIVE	4
1.2	PROPOSED DEVELOPMENT	4
1.3	SCOPE OF WORK	4
2	SITE INFORMATION	6
2.1	SITE DESCRIPTION	6
2.2	Topography	8
2.3	GEOLOGY AND SOILS	8
2.4	REGIONAL HYDROGEOLOGY	8
2.5	ACID SULFATE SOIL RISK	9
3	METHOD OF INVESTIGATION	10
3.1	BOREHOLE DRILLING AND DCP TESTING	10
3.2	SOIL SAMPLING	11
4	INVESTIGATION RESULTS	12
4.1	SUBSURFACE CONDITIONS	12
4.1.1	Groundwater	12
4.2	LABORATORY TEST RESULTS	13
4.2.1	Soil Salinity Testing	13
4.2.2	Exposure Classification Tests	14
5	DISCUSSION AND RECOMMENDATIONS	16
5.1	SITE PREPARATION	16
5.2	DILAPIDATION SURVEY	16
5.3	Earthworks	16
5.3.1	Expected Excavation Conditions	16
5.3.2	Groundwater / Seepage Inflow	17
5.3.3	Construction / Excavation Induced Vibration	17
5.3.4	Excavation Support	19
5.4	SALINITY RISK	21
5.5	Foundations	21
5.5.1	Aggressivity / Exposure Classification	22
6	C ONCLUSION AND R ECOMMENDATIONS	23
7	GENERAL LIMITATIONS	24
8	References	25

FIGURES

Figure 1: Site plan

TABLES

Table 1:	Summary of Subsurface Conditions
Table 2:	Electrical Conductivity Results
Table 3:	Exposure classification (aggressivity) test results
Table 4:	Geotechnical Design Parameters – Retaining Walls

APPENDICES

Appendix A:	Architectural Plans
Appendix B:	Borehole / DCP Logs
Appendix C:	Laboratory Report

1 PROJECT INFORMATION

1.1 INTRODUCTION AND OBJECTIVE

Geo-Environmental Engineering Pty Ltd (GEE) was commissioned by Couvaras Architects, on behalf of Siew Leng Kiang, to undertake a geotechnical investigation at 33 - 35 Church Street, Randwick NSW (herein referred to as the 'site').

The investigation was required to support a development application with Randwick Council for a multi-storey residential development and to address the requirements of Part 6, Clause 6.2 of the Randwick Local Environment Plan 2012 because earthworks proposed as part of the proposed development have the potential to impact on adjoining developments. The investigation was also required to provide relevant geotechnical information to assist with the structural design and construction of the development by others.

This report presents the factual and interpreted results of the field investigations and provides interpretation and recommendations regarding the ground conditions at the site, in accordance with client requirements and the agreed scope of work.

1.2 PROPOSED DEVELOPMENT

According to the architectural plans provided, a copy of which is provided in **Appendix A**, the proposed development will involve the demolition of the existing dwelling and associated structures before constructing a new four-level building over a single level basement. The basement level will also incorporate a mechanical car stacker.

The design finished floor level (FFL) for the basement is proposed to be 66.07m above Australian Height Datum (AHD). Considering the existing surface levels across the site and allowing for a 0.2m thick floor slab, excavation of between approximately 3.5m and 4.0m depth will be required. Although deeper excavation of approximately 3.0m will be required locally to accommodate the lift shaft and car-stacker. The basement is proposed to be setback between 0.6m and 1.0m from the side boundaries and approximately 4.0m from the front and rear boundaries.

1.3 SCOPE OF WORK

The scope of work undertaken by GEE, to satisfy the above objectives, was as follows:

- ♦ Dial Before You Dig (DBYD) desktop search for underground services,
- Visual appraisal of the site conditions and locality,

- \diamond $\;$ Review of the geological and soils maps for the area,
- The drilling of boreholes and the performance of Dynamic Cone Penetrometer (DCP) tests in accessible parts of the site to assess the subsurface conditions,
- Collection of representative soil samples from the boreholes,
- Analysis of selected soil samples for the preliminary assessment of soil salinity and aggressivity, and
- ♦ Engineering assessment and reporting.

2 SITE INFORMATION

2.1 SITE DESCRIPTION

The site is located on the eastern side of Church Street and is surrounded by similar low level residential dwellings to the north and east with a four storey apartment block located to the south. The site covers an area of 587.88m² and is legally described as Lot 1 in Deposited Plan (DP) 937810 and Lot 3 in Deposited Plan 650404.

At the time of the investigation there was a single storey brick dwelling occupying the majority of the site. The front yard has been partly retained by a low brick retaining wall with the small area between the dwelling and the front boundary covered in lawn The side passages adjacent to both dwellings comprised concrete pathways and some small garden beds. The rear yard was mostly paved with established garden beds containing some small trees and shrubs located along the rear boundary.

Existing site features are shown on the architectural plans, which are provided in **Appendix A**, while photographs taken during the field investigations are provided below in **Plates 1** to **Plate 8**.

Plate 1 – Front of site viewed to the east.

Plate 2 – Boundary between No.31 and No.35 viewed to east

Plate 4 – Apartment block to south, viewed to east.

Plate 5 – Boundary between No.35 and apartment block to south.

Plate 7 – Rear yard viewed to the south.

Plate 6 – Boundary between No.35 and apartment block to south.

Plate 8 – Front boundary viewed to the north.

2.2 TOPOGRAPHY

The site is located on a gentle westerly dipping slope and according to the spot heights shown on the architectural plans (**Appendix A**), the surface elevation along the eastern (rear) boundary is approximately 70.6m AHD falling to approximately 68.2m AHD along the footpath adjacent to the western (front) boundary.

2.3 GEOLOGY AND SOILS

A review of the regional geological map (reference 1) indicates that the site is underlain by Quaternary aged sediments typically comprising "*…medium to fine-grained 'marine' sand with podsols".* These unconsolidated sediments form what is more commonly known as the 'Botany Sands' formation and comprise a sequence of marine and aeolian (dune) sands contained in the Botany Basin. The thickness of the 'Botany Sands' formation ranges from less than 10m (around the perimeter of the Botany Basin) to in excess of 60 m (in the central parts of the basin).

The Botany Sands generally mantle Triassic aged bedrock which is expected to comprise the Hawkesbury Sandstone Formation at this location. The Hawkesbury Sandstone Formation typically comprises "*…Medium to coarse-grained quartz sandstone, very minor shale and laminite lenses*".

A review of the regional soils map indicates that the site is located within the Newport Soil Landscape Group (reference 2), recognised by gently undulating plains to rolling rises of sand over other soil materials or bedrock. Local reliefs are up typically less than 10m and slopes are usually less than <10% in gradient, but occasionally up to 35%. Soils of the Newport Group typically comprise Aeolian sands, have very low soil fertility and form a very high soil erosion hazard.

Soils identified onsite were consistent with the published mapping.

2.4 REGIONAL HYDROGEOLOGY

Based on the geological information it was anticipated that permanent groundwater is likely to be unconfined and present within the Quaternary aged sediment formation (i.e. the Botany Sand formation). The direction of groundwater flow is generally in a southerly and south-westerly direction, discharging to Botany Bay (reference 4). If not within the soil profile then it will be confined, or partly confined, within discrete water-bearing zones within the underlying sandstone bedrock formation. However, intermittent 'perched' water seepage is likely to occur at the soil-bedrock interface following heavy and prolonged rainfall events.

2.5 ACID SULFATE SOIL RISK

Acid Sulfate Soil is naturally occurring sediments and soils containing iron sulfides (principally iron sulfide, iron disulfide or their precursors). Oxidation of these soils through exposure to the atmosphere or through lowering of groundwater levels results in the generation of sulfuric acid.

Land that may contain potential acid sulfate soils was mapped by the NSW Department of Land and Water Conservation (DLWC) and based on these maps local Councils produced their own acid sulfate soil maps to be used for planning purposes.

The DLWC Acid Sulfate Soil Risk Map (reference 4), indicates that the site lies within an area with no known occurrences of acid sulphate soil and land activities within this area are "...*not likely to be affected by acid sulphate soil materials*".

The ASS Planning Map produced by the NSW Department of Planning and Environment for Randwick Council, and available via interactive online mapping, indicates that the site lies outside of areas defined as 'Class 1' to 'Class 5.' In this regard, an acid sulphate soil assessment or management plan is not warranted.

3 METHOD OF INVESTIGATION

Fieldwork was undertaken on the 30th September 2021 by Matthew Kilham and Zachary Ziesel from GEE and the work comprised:

- ♦ A visual site inspection of site conditions,
- The drilling and logging of two boreholes (BH1 and BH2) in accessible areas of the site to assess the soil conditions and depth to bedrock, and
- The performance of DCP tests adjacent to each borehole to assess the consistency and/or relative density of the soil profile, and
- ◊ The collection of representative soil samples from the boreholes, for laboratory testing.

3.1 BOREHOLE DRILLING AND DCP TESTING

Prior to commencement of the bores, an inspection for potential underground services and utilities was completed and cross-checked with the results of a Dial Before you Dig (DBYD) search.

The boreholes were drilled using an 85mm diameter, hand operated auger, while the DCP tests were performed in accordance with Australian Standard Test Method AS1289.6.3.2-1997 (reference 5). During drilling, the encountered fill and natural soils were geologically logged by an experienced geotechnical engineer, taking care to describe the presence and depth of fill material / previously disturbed ground, the natural stratum, moisture, seeps or water bearing zones, and the elevation of the water level/hydraulic head.

Each of the boreholes were advanced through a aeolian sand soil profile and clayey sand before refusing on weathered sandstone bedrock or bands of ironstone in proximity to the weathered bedrock at depths of 1.30m below ground surface (bgs) at BH1 and 2.00m bgs at BH2. The corresponding DCP tests were terminated due to practical refusal at similar depths to the boreholes which support the conclusion that the weathered bedrock had been encountered.

The location of the boreholes and DCP tests were estimated using measurements from existing site features and are shown on **Figure 1** along with other site features. A copy of the borehole logs, including DCP test results, is provided in **Appendix B**.

3.2 SOIL SAMPLING

Soil samples were collected at regular intervals from borehole (BH1) and selected samples were submitted to Eurofins laboratory for the following NATA accredited testing as part of a preliminary assessment of soil salinity and soil aggressivity towards buried concrete and/or unprotected steel. These results are provided in Section 4.2.

4 INVESTIGATION RESULTS

4.1 SUBSURFACE CONDITIONS

The subsurface conditions, as observed in the boreholes typically comprised minor surface topsoil materials over sandy aeolian soils which was underlain by residual clayey sand overlying weathered sandstone bedrock which was consistent with the Hawkesbury Sandstone formation.

Detailed descriptions of the subsurface conditions on site are provided in the borehole logs (including DCP test data) in **Appendix B**, while a summary of the subsurface conditions encountered across the rear of the site are provided in **Table 1**.

Layer / Unit	Description	Depth to base of Layer (m) ¹	Consistency / Relative Density ¹
	SAND: dark brown, fine to medium grained, moist with a trace of silt.	0.30	Very loose
NATURAL SOIL	Clayey SAND: orange white, fine to medium grained, moist. Note: An upper iron indurated weathered crust observed in BH1.	1.35 – 2.35	Loose to medium dense
BEDROCK	SANDSTONE: orange red, fine to coarse grained, extremely weathered to highly weathered.		-

Table 1: Summary of Subsurface Conditions

Note 1: Estimated from DCP tests and borehole observations.

Adverse aesthetics, specifically odours associated with potential contamination, were not noted during the fieldwork. Additionally, no potentially Asbestos Containing Materials (ACM) was observed in the bores during the drilling.

4.1.1 Groundwater

Permanent groundwater (i.e. the water table) was not encountered during the drilling of the boreholes which extended to the bedrock formation. However, some seepage water was observed on the interface of the residual soil and bedrock formation in BH1. The seepage water is directly recharged by rainfall events and therefore its presence and quantity will vary significantly.

The permanent groundwater is expected to be confined, or partly confined, within discrete water-bearing zones within the underlying sandstone bedrock formation. Groundwater flow is dominated by water movement through fractures (or joints), where stress has caused partial loss of cohesion in the rock and evidence of potential water bearing fractures is usually the presence of clay or iron-staining along the face of the joints.

4.2 LABORATORY TEST RESULTS

A limited number of soil samples were collected during the fieldwork and were submitted to Eurofins Laboratory Services for the following tests:

- Electrical Conductivity (EC) to provide a preliminary assessment of the salinity potential of the soil profile, and
- Resistivity, Sulphate, Chloride and pH to determine the exposure classification of the soil with respect to buried structural concrete or unprotected steel.

The laboratory test results are presented in **Appendix C**, while a summary of the results is provided in the following sections.

4.2.1 Soil Salinity Testing

An assessment of soil salinity conditions has been undertaken with reference to guidance published by the Department of Land and Water Conservation NSW (reference 6). In this regard, selected samples of natural soil were submitted to Eurofins for NATA accredited testing of Electrical Conductivity (EC), which is the primary indicator of salinity. The raw EC results and the EC_e results are provided in **Table 2**.

Sample ID	Sample Location	Sample	EC	Multiplication	ECe
Sample ID	/ Depth	Description	(dS/m)	Factor ¹	(dS/m)
ZZ200921-01	BH2 / 0.1 – 0.2	SAND	0.019	17	0.32
ZZ200921-02	BH1 / 0.5 – 0.6	SAND	<0.01	17	<0.17
ZZ200921-03	BH1 / 1.2 – 1.3	Clayey SAND	<0.01	14	<0.14

Table 2: Electrical Conductivity Results

 1 EC_e results are EC data multiplied by a conversion factor which depends upon the soil texture / type.

According to the Department Land and Water Conservation NSW (reference 6) the soil salinity classes are as follows:

<u>ECe (dS/m)</u>	<u>Class</u>
<2	Non Saline
2 – 4	Slightly Saline
4 – 8	Moderately Saline
8 – 16	Very Saline
>16	Highly Saline

The above test data indicate that the fill/natural soil profile is non-saline.

4.2.2 Exposure Classification Tests

Selected soil samples of natural and fill, sandy and clayey soils were submitted to Eurofins, for NATA accredited testing of pH, sulphate, chloride and resistivity to provide a preliminary assessment of the exposure classification (or aggressiveness/corrosiveness potential) of the soil with respect to future buried steel and/or concrete (e.g. footings).

To determine the aggressiveness of the soil and water environment on concrete or steel, the chemical test results are compared to Tables 6.4.2(C) and 6.5.2(C) from Section 6 of the Australian Standard AS 2159 (reference 7). This section provides assessment criteria to assess the 'exposure classification' for a concrete or steel pile. The Standard has two classes of soil conditions:

- (A) high permeability soils below groundwater; and
- (B) low permeability soils and all soils above groundwater.

For this site, soil samples above the water table are considered to be condition 'B'. Based on the chemical testing results, the standard provides a range of 'exposure classifications' from non-aggressive to very severe. For the range of chemical conditions in the soil surrounding the structure, the condition leading to the most severe aggressive conditions is adopted.

A summary of the soil results is provided in **Table 3**.

Sample ID	Location / Depth (m bgs)	Soil Condition	рН	Sulphate (SO ₄) mg/kg	Chloride (Cl) mg/kg	Resistivity Ohm.cm
ZZ200921-01	BH2 / 0.1 – 0.2	В	6.4	<10	<10	53,000
ZZ200921-02	BH1 / 0.5 – 0.6	В	6.6	<10	<10	170,000
ZZ200921-03	BH1 / 1.2 – 1.3	В	5.8	<10	<10	130,000

Table 3: Exposure classification (aggressivity) test results

The aggressivity potential of the environment on concrete is dependent on the sulphate and pH levels of the soil and the chloride and sulfate concentration of the groundwater. Based on the limited number of test results and according to AS2159-2009 (reference 7) the subsurface profile is non-aggressive towards concrete. According to Australian Standard AS 3600-2009 (reference 8), specifically Table 4.8.1 this equates to an exposure classification of 'A1'. However, a classification of 'A1' is appropriate for the salinity levels encountered and this corresponds to a moderate aggressivity.

The corrosive potential of an environment on unprotected steel is normally dependent on pH, chloride, and resistivity levels of the soil. Based on the limited number of test results above and with reference to AS2159-2009, the subsurface profile is considered to be non-aggressive/non-corrosive.

5 DISCUSSION AND RECOMMENDATIONS

5.1 SITE PREPARATION

Following demolition work and prior to construction of the new development, topsoil with organic matter and any pavement materials should be removed from the proposed building areas.

Material removed from site will need to be managed in accordance with the provisions of current legislation and may include segregation by material type classification in accordance with NSW EPA (2014) *Waste Classification Guidelines* (reference 9) and disposal at facilities appropriately licensed to receive the particular materials. GEE notes that the natural soil and bedrock may be classified as Virgin Excavated Natural Material (VENM) and re-used on other sites rather than disposed at a landfill, although it must be proven to be free of contamination.

Also, considering the proximity of adjoining buildings, care must be taken during demolition works to ensure that the adjoining footings, or the zone of influence of these footings, are not disturbed.

5.2 DILAPIDATION SURVEY

It is recommended that prior to demolition, bulk excavation and construction that a detailed dilapidation survey be carried out on all adjacent buildings and associated structures. The purpose of a dilapidation report is to confirm that demolition, excavation and construction works, are not causing damage and therefore may prevent future claims of damage arising from the works. Preferably these surveys should be agreed to, and the report signed, by the owners of the adjacent building prior to work commencing.

5.3 EARTHWORKS

Earthworks at the site are expected to comprise excavation to a depth of approximately 3.5m and 6.0m to accommodate the basement level, the lift shaft and car stacker. The basement is proposed to be setback between 0.6m and 1.0m from the side boundaries and approximately 4.0m from the front and rear boundaries.

5.3.1 Expected Excavation Conditions

Based on the fieldwork completed by GEE, the excavation will predominately encounter a very loose to medium dense sandy soil profile and the underlying sandstone bedrock formation.

The strength of the bedrock has not been accurately assessed as part of this investigation and was not part of the scope of works. However, GEE anticipates that the sandstone within the depth of the proposed excavation will be low to medium strength becoming medium to high strength shortly thereafter. To confirm the strength of the bedrock within the depth of proposed excavation would require more detailed investigations including the coring and strength testing of the bedrock formation.

The excavation of the soil profile, and any extremely low to very low strength bedrock, is expected to be readily excavated using standard equipment such as excavators. However, the use of an impact hammer is expected to be required upon encountering the sandstone bedrock, particularly if combined with unfavourable rock-defect geometry. Preferably, the rock excavation will be undertaken using a hydraulic hammer, in combination with a rock saw which will minimise vibration (refer to section 5.3.3).

5.3.2 Groundwater / Seepage Inflow

Permanent groundwater was not encountered during the drilling of each borehole, although some intermittent perched seepage water did exist on the surface of the bedrock formation and seeps should also be expected to occur from defects/joints within the bedrock mass that typically has a low permeability (hydraulic conductivity) in the order of 10⁻⁸ and 10⁻⁷ m/sec – reference 10. In this regard, the volume of groundwater required to be withdrawn during excavation works, and long term, is expected to be significantly less that the 3ML/year and according to Clause 7 of Schedule 4 in the Water Management (General) Regulation 2018 the site should also be exempt from needing a water access licence. As detailed in a Fact Sheet provided by Water NSW (reference 11), 3ML/year is similar to the volume taken by landholders in accordance with domestic and stock rights held under Section 52 of the Water Management Act 2000 for which a water access licence is not required to be held.

The flow of seepage water is expected to be sufficiently managed during the earthworks phase by pumping from a sump at the base of the excavation. In the long term, it is recommended that sufficient permanent drainage be provided beneath and around the outside of the subsurface structures to ensure the dissipation of any hydrostatic forces which may result from the accumulation of any seepage water. This will also mean that the basement will not require tanking.

5.3.3 Construction / Excavation Induced Vibration

Structures and utilities adjacent to the excavation area are potentially sensitive to vibrations above certain threshold levels (regarding potential for cracking). When using a hydraulic hammer, vibrations will be transmitted through the ground and potentially impact

on adjoining structures. Where possible, the use of other techniques not involving impact (*e.g.* rock saws), should be adopted as they would reduce or possibly eliminate risks of damage due to vibrations.

Where vibration intensive works such as hydraulic hammering of competent rock is proposed, contractors should assess the potential impact of their works based on the borehole logs and local knowledge of similar bedrock formations. Monitoring of construction induced vibration should be undertaken at the commencement of such activities at the nearest vibration receptor and in consultation with the project superintendent and geotechnical engineer so that excessive vibration effects are not generated.

Peak Particle Velocity (PPV) is usually the adopted measure of ground vibration, and the safe limits depend on the sensitivity of the adjoining structures. There are several Australian and overseas publications which provide vibration velocity guideline levels (or safe limits) including:

- Australian Standard AS2187.2-2006 Explosives Storage and use Use of explosives -Appendix J: Ground Vibrations and Airblast Overpressure (reference 12).
- Australian Standard AS2670.2-1990 Evaluation of human exposure to whole-body vibration - Part 2: Continuous and shock-induced vibration in buildings (1 to 80 Hz) (reference 13).
- ◊ DIN 4150 Part 3 1999. Effects if Vibration on Structures (reference 14).
- Department of Environment and Conservation NSW, 2006. Assessing Vibration: a technical guideline (reference 15).
- British Standard BS 7385-1:1990. Evaluation and measurement for vibration in buildings. Guide for measurement of vibrations and evaluation of their effects on buildings (reference 16).
- British Standard BS 7385-2:1993. Evaluation and measurement for vibration in buildings. Guide to damage levels from groundborne vibration (reference 17).

Furthermore, the owners of adjoining assets/utilities sometimes have their own limits. In the absence of PPV guidelines from affected asset owners, GEE recommends that a limit of 5 mm/s is adopted for the adjoining structures and utilities.

If vibration levels are found to be unacceptable during the earthworks, it may be necessary to adopt vibration mitigation measures such as:

♦ The use of smaller excavation plant and hydraulic hammers,

- The use of a rock sawing or grinder adjacent to the site boundaries. GEE notes that this equipment also reduces the possibility of over-break and loosening of the rock mass.
- Hammering at 50% capacity in short bursts to prevent the buildup of resonant frequencies,
- The use of low vibration techniques such as rotary grinders or chemical rock splitting,
- Progressive breakage from open excavated faces,
- ♦ Selective breakage along open joints, where present, and
- Orientation of the rock hammer pick away from property boundaries and into the existing open excavation.

Finally, human discomfort levels caused by vibration are typically less than the levels that are likely to cause cosmetic or structural damage to structures. Therefore, complaints may be lodged by neighbours before any cosmetic or structural damage occurs. In this regard, consideration may be given to adopting more stringent vibration limits recommended for human amenity or, as a minimum, ensuring that vibration monitoring is undertaken as reassurance to confirm that vibrations are within safe limits. Acceptable vibration limits for human comfort caused by construction and excavation equipment are provided in DEC (2006) (reference 15). Specifically, maximum acceleration limits as specified in Table 2.2 of the guideline should be adopted.

5.3.4 Excavation Support

The excavation for the basement is expected to extend to within proximity to the site boundaries and therefore, temporary and permanent support (as part of the final basement structure) will be required to prevent damage to the adjoining structures.

Given the ground conditions encountered, a contiguous pile wall (where the gaps between piles are progressively filled with grout / concrete) is recommended. The depth of socket into the sandstone formation will depend on the type of pile adopted and capacity of the rig. If a suitable socket cannot be achieved, and in the unlikely scenario that the piles are founded above the depth of excavation, anchors will need to be installed in the toe of each pile to provide lateral restraint. Ultimately, the choice of support should be discussed with an experienced contractor and will primarily depend on cost, although other factors such as the aesthetics of the final wall, whether it can function as a structural support. Furthermore, the piling contractor complete any investigation necessary to determine the drillability of the rock.

For piles, concrete injected Continuous Flight Auger (CFA) piles, are recommended as the sandy soil has the potential to collapse. This potential for collapse will also be exacerbated by any seepage water present at the interface of the soil and bedrock formations.

The design of the retention system should be done by a suitably experienced structural engineer in accordance with AS4678-2002 Earth Retaining Structures (reference 18) with consideration of both the short- and long-term configurations. In the short term, should the shoring walls be cantilevered or supported by a single row of anchors and some movement behind the walls can be tolerated, earth pressures acting on the shoring walls can be calculated using a triangular earth pressure distribution.

When internal props, such as the ground floor slab restrain retaining wall movement, or where significant movements cannot be tolerated (rigid wall), an 'at-rest' earth pressure coefficient (Ko) is recommended with either a uniform or trapezoidal pressure distribution. It should be noted that shoring which is designed for this 'at rest' coefficient will still undergo some lateral movements, depending on the final configuration of the wall and construction sequence. Additionally, a factor of safety should be applied in considerations of the wall movement needed to fully mobilise passive pressure.

The design of any retaining structures should make allowance for all applicable surcharge loadings including construction activities around the perimeter of the excavation and adjacent buildings.

Finally, computer aided analysis may be carried out to assess potential ground movements based on different wall designs and construction sequence, so as to control deflections to within tolerable limits. It is also considered prudent to carry out surveys before and after installation to measure the actual movement of the wall or soil.

Preliminary geotechnical parameters for retaining wall design are provided below in **Table 4**. However, the additional investigations are recommended following demolition to confirm the depth, strength and quality of the bedrock formation beneath the entire development.

Material		Natural Soil Profile	Sandstone
Bulk Unit Weight (kN/m ³)		18	22
Earth	Active (Ka)	0.4	0.25
Pressure Coefficients	At Rest (Ko)	0.55	0.4
COEfficients	Passive (Kp)	2.5	3.5
Elastic Modulus (MPa)		5	100
Drained Cohesion c' (kPa)		0	40
Drained Friction Angle ¢' (°)		30	32
Poisson's Ratio		0.35	0.3

Table 4: Preliminary Geotechnical Design Parameters – Retaining Walls / Shoring

Note 1: Unit weights are based on visual assessment only – order of accuracy approximately $\pm 10\%$. Note 2: The passive earth pressure coefficients for rock have been reduced to allow for potential defects in the rock mass.

5.4 SALINITY RISK

The testing carried out on the soil profile (refer to Section 4.2.1) indicate that non-saline soil conditions exist beneath the site and therefore a salinity management plan is not warranted.

5.5 FOUNDATIONS

Following the required excavation work for the proposed basement levels, the subgrade is expected to comprise the sandstone bedrock formation. The shoring piles, if doubling as foundations, will also extend well into the sandstone formation.

The sandstone bedrock formation is capable of providing a minimum allowable end bearing capacity of 800kPa (reference 10). However, to allow for a less conservative structural design it is recommended that additional investigation be completed following demolition to confirm the depth, strength and quality of the bedrock beneath the entire development. As previously mentioned, grout or concrete injected Continuous Flight Auger (CFA) piles are recommended as the sandy soil has the potential to collapse. Particularly if seepage water is encountered at the soil and bedrock interface.

Finally, footing systems should be designed by a suitably qualified and experienced structural engineer, and GEE recommends that inspection by a geotechnical engineer is

undertaken during the footing excavation stage, to confirm that the design founding conditions have been achieved.

5.5.1 Aggressivity / Exposure Classification

Based on the limited exposure classification test results (Section 4.2.2), and in accordance with AS 2159-2009 (reference 7), the subsurface concrete structures (*e.g.* footings) should be designed based on non-aggressive soil conditions for concrete. According to Australian Standard AS 3600-2009 (reference 8), the equivalent exposure classification is 'A1'. With respect to unprotected steel, the natural soil profile is considered to be non-aggressive / non-corrosive.

6 CONCLUSION AND RECOMMENDATIONS

GEE considers that sufficient information has been gained to be confident of the subsurface conditions across the site and to provide Council with assurances regarding the geotechnical feasibility of the proposed development.

Based on the results of the investigation, the proposed development is considered feasible. Additionally, GEE concludes that the existing rock formation can withstand the proposed loads to be imposed, and standard shoring works (provided they are designed by a structural engineer), will ensure the stability of the excavation and provide protection and support of the adjoining properties. However, further investigations are recommended (preferably following DA consent and after demolition of existing structural design and to minimise the uncertainty for earthworks contractors. Permanent groundwater was also not encountered within the boreholes and is expected to be confined, or partly confined within the sandstone bedrock formation. In this regard, the volume of groundwater required to be withdrawn during excavation works, and long term, is expected to be significantly less that the 3ML/year and according to Clause 7 of Schedule 4 in the Water Management (General) Regulation 2018 the site should also be exempt from needing a water access licence. A tanked basement will also not be necessary.

The geotechnical issues associated with the proposed development have been addressed by the investigation and are discussed in this report. If, during construction, any conditions are encountered that vary significantly from those described or inferred in the above report, it is a condition of the report that we be advised so that those conditions, and the conclusions discussed in the report, can be reviewed and alternative recommendations assessed, if appropriate.

GEE will be pleased to assist with any further advice or geotechnical services required in regard to the proposed development.

7 **GENERAL LIMITATIONS**

Soil and rock formations are variable. The logs or other information presented as part of this report indicate the approximate subsurface conditions only at the specific test locations. Boundaries between zones on the logs or stratigraphic sections are often not distinct, but rather are transitional and have been interpreted.

The precision with which subsurface conditions are indicated depends largely on the frequency and method of sampling, and on the uniformity of subsurface conditions. The spacing of test sites also usually reflects budget and schedule constraints. Groundwater conditions described in this report refer only to those observed at the place and under circumstances noted in the report. The conditions may vary seasonally or as a consequence of construction activities on the site or adjacent sites.

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities or changes to the design of the development, it is a condition of this report that GEE be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of changed soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

The comments given in this report are intended only for the guidance of the design engineer, or for other purposes specifically noted in the report. The number of boreholes or test excavations necessary to determine all relevant underground conditions which may affect construction costs, techniques and equipment choice, scheduling, and sequence of operations would normally be greater than has been carried out for design purposes. Contractors should therefore rely on their own additional investigations, as well as their own interpretations of the borehole data in this report, as to how subsurface conditions may affect their work.

8 **REFERENCES**

- 1. Department of Mineral Resources, 1983: Sydney 1:100,000 *Geological Series Map Sheet 9130 (Edition 1).*
- 2. Department of Land and Water Conservation (DLWC), 2004: *Sydney 1:100 000 Soil Landscape Series Sheet 9130 (second edition).*
- 3. Hatley, R.K., 2004, *Hydrogeology of the Botany Basin*, Australian Geomechanics, Vol. 39 No. 3, September 2004.
- 4. DLWC, 1997: Department of Land and Water Conservation of NSW, 1997: *Botany Bay Acid Sulfate Soil Risk Map - Edition Two*.
- 5. Australian Standards, 1997. *AS1289.6.3.2 Determination of the penetration resistance of a soil 9kg dynamic cone penetrometer test*.
- 6. Department of Land and Water Conservation NSW, 2002: Site investigations for urban salinity.
- 7. Australian Standard (AS) 2159 -2009: Piling Design and Installation.
- 8. Australian Standard (AS) 3600 2009: Concrete Structures.
- 9. New South Wales Environmental Protection Authority (NSW EPA), 2014: Waste classification guidelines Part 1 classifying waste. November 2014.
- 10. Pells et al, 2019: *Classification of Sandstones and Shale in the Sydney Region: A Forty Year Review.* Australian Geomechanics Society, 2019.
- 11. Water NSW, Fact Sheet 250920 entitled "*Water access licence exemption for aquifer interference activities taking 3ML"*.
- 12. Australian Standard AS2187.2-2006 Explosives Storage and use Use of explosives Appendix J: Ground Vibrations and Airblast Overpressure.
- 13. Australian Standard AS2670.2-1990: Evaluation of human exposure to wholebody vibration - Part 2: Continuous and shock-induced vibration in buildings (1 to 80 Hz).
- 14. DIN 4150 Part 3 1999. Effects if Vibration on Structures.
- 15. Department of Environment and Conservation NSW, 2006. Assessing Vibration: a technical guideline.
- 16. British Standard BS 7385-1:1990. Evaluation and measurement for vibration in buildings. Guide for measurement of vibrations and evaluation of their effects on buildings.

- 17. British Standard BS 7385-2:1993. Evaluation and measurement for vibration in buildings. Guide to damage levels from groundborne vibration.
- 18. Australian Standard AS4678-2002: Australian Standard, 2002: *Earth Retaining Structures.*

Geotechnical Investigation Report 33 - 35 Church Street, Randwick NSW

FIGURES

1 – Site Plan

Geotechnical Investigation Report 33 - 35 Church Street, Randwick NSW

APPENDIX A

Architect Plans (33 Sheets)

Sheet	Lint
Sneet	LISL

Y

	1		(
		Current	Current Revision
Number	Name	Revision	Date
00	Cover Sheet	AD	11/03/24
01	Site Plan	AD	11/03/24
02	Basement	AD	11/03/24 🦯
03	Ground Floor Plan	AD	11/03/24
04	Level 1	AD	11/03/24
05	Level 2	AD	11/03/24
06	Level 3	AD	11/03/24
07	Roof Plan	AD	11/03/24 🦯
08	Elevations	AD	11/03/24
09	Elevations	AD	11/03/24
10	Sections	AD	11/03/24
11	Sections	AD	11/03/24
12	Area calculation Plan	AD	11/03/24
13	Landscape Area Calculations	AD	11/03/24
15	Shadow Diagrams - Sheet 2	AD	11/03/24
15.1	Shadow Diagrams - North Elevation Neighbour 21 June 1	AD	11/03/24
15.2	Shadow Diagrams - North Elevation Neighbour 21 June 2	AD	11/03/24
15.3	Shadow Diagrams - North Elevation Neighbour 21 June 3	AD	11/03/24
16	ADG Compliance	AD	11/03/24
17	Construction Management Plan	AD	11/03/24
18	Waste Management Plan	AD	11/03/24
19	Materials & Finishes	AD	11/03/24
20	Street View	AD	11/03/24
21a	Suns Eye diagrams - June 21	AD	11/03/24
21b	Suns Eye diagrams - June 21	AD	11/03/24
21c	Suns Eye diagrams - June 21	AD	11/03/24
21d	Suns Eye diagrams - June 21	AD	11/03/24
21e	Suns Eye diagrams - June 21	AD	11/03/24
21f	Suns Eye diagrams - June 21	AD	11/03/24
21g	Suns Eye diagrams - June 21	AD	11/03/24
21h	Suns Eye diagrams - June 21	AD	11/03/24
21i	Suns Eye diagrams - June 21	AD	11/03/24
NN	Neighbour Notification	AD	11/03/24

DEVELOPMENT SUMMARY

Site Area	=	587.88m ²
Zone	=	R3 - Medium Density Residential
Max FSR ARHSEPP bonus		0.9:1 (523m²) 0.2 - 0.5 :1
Affordable provided Allowable bonus Proposed FSR	=	40% (303m²) 0.4:1 1.29 :1 (756m²)
Min landscaping (DCP) Min deep soil Min deep soil (ARHSEPP)		293.9m² (50%) 176.4m² (30%) 88.2m² (15%)
Provided landscaping (DCP) Provided deep soil Provided deep soil (ARHSEPP)	=	271m² (46.1%) 154.2m² (26.3%) 93m² (15.8%)
PARKING (ARHSEPP)		
Min. Visitors Min. Residents	= =	Nil (5x1) + (2x1.5) = 8
Provided Total	=	7 (+3 carstackers)
~~~~~	٨.	



Street View

Issue	Description	Date
2	revised for council	03/11/23
٨A	Client Review	18/01/24
٨B	Client Review	29/01/24
NC.	Client Review	30/01/24
	Client Review	11/03/24

>A Level 1, 95 Cronulla Street, Cronulla NSW 2230 >ABN 86 660 152 198 >T 02 9527 7459 >E architect@couvaras.com >W www.couvaras.com Nominated Architect: Peter Couvaras Reg No.7344

>ARCHITECTS Figured dimensions only to be used. Do not scale off drawings Any discrepancies to be verified on site with architect.



33-35 Church St Scale @ A3

		Project	21004
		Issue	Issue AD
t, Randwick		uly 2023	
	11 July 2023		





>ARCHITECTS

Ζ

**Client Review** 

11/03/24

14.2m ²	
7.6m ²	

otal Area of TPZ	176m ²
ncroachment Basement	7.6m ²
	4.3%

Drawing Name Basement			21004
			Issue AD
33-35 Church St, Randwick		Sheet	
Scale 1:200 @ A3	11 July 2023	02	







		Project	21004
		Issue	Issue AD
St, Randwick		Sheet	
@ A3	11 July 2023	04	•





			Project	21004
			Issue	Issue AD
St, Randwick			Sheet 05	
@ A3	11 July 2023			



		Project	21004	
		Issue	Issue AD	
St, Randwick		Sheet		
@ A3	11 July 2023	06	)	




Ε
62
Boundary

		Project	21004
		Issue	Issue AD
St, Randwick		Sheet	,
@ A3	11 July 2023	01	



Issue

AB

AC AD





## 3. Screen Detail Scale 1:50





		Project	21004
		Issue	Issue AD
St, Randwick		Sheet	
ated @ A3	11 July 2023	30	5



**1. East** Scale 1:200



2. North Scale 1:200



L 78.57			
Level 2 L 75.47			
Level 1 L 72.37			
d Floor L 69.27			
<u>3</u> 7			
3			
2			
7			
r7			
t7			
		Project Issue	21004
t, Randwick		Sheet	Issue AD
@ A3	11 July 2023	09	



Issue

AC.

AD





## Glazed Door Schedule

Description	Height	Width
	2900 mm	4345 mm
	2375 mm	825 mm
	2900 mm	2500 mm
	2900 mm	3300 mm
	2900 mm	2500 mm
	2900 mm	900 mm
	2900 mm	2300 mm
	2900 mm	2400 mm
	2900 mm	4000 mm
	2900 mm	3400 mm
	2400 mm	3280 mm

Window Schedule		
Description	Height	Width
	1000	2405
\A/ - 1	1900	3495
Window	1100	3500
Window	1100	3000
ASTER Adjustable Louvre Window	900	1500
Window	1100	2700
Window	1100	3700
ng Window	900	1000
Window	2900	4650
ng Window	2400	300
Window	1100	2400
Window	1700	2600
Window	1500	3000
Window	2900	4650
low	1900	2100
Window	700	3700
/light	1180	940
	7610	410
ASTER Adjustable Louvre Window	600	1400
Window	1700	2500
N	900	6600
ASTER Adjustable Louvre Window	600	2400
Window	1700	1900
ASTER Adjustable Louvre Window	600	1500

		Pro	oject	21004
		Iss	ue	Issue AD
St, Randwick		She		
@ A3	11 July 2023		11	







1. Ground Floor Scale 1:200



3. Level 2

Scale 1:200

Issue	Description	Date	SECTION 4.56
Z	revised for council	03/11/23	
AA	Client Review	18/01/24	APPLICATION
AB	Client Review	29/01/24	
AC	Client Review	30/01/24	
AC AD	Client Review	11/03/24	





2. Level 1 Scale 1:200



4. Level 3 Scale 1:200

North >A Level 1, 95 Cronulla Street, Cronulla NSW 2230 >ABN 86 660 152 198 >T 02 9527 7459 >E architect@couvaras.com >W www.couvaras.com Nominated Architect: Peter Couvaras Reg No.7344

Figured dimensions only to be used. Do not scale off drawings Any discrepancies to be verified on site with architect.



>ARCHITECTS

Area	Level
m²	Ground Floor
m²	Level 1
M ²	Level 2

		Project 21004
ation Plan		Issue AD
St, Randwick		Sheet
@ A3	11 July 2023	12



		Project 21004
Area Calcul	ations	Issue Issue AD
St, Randwick		Sheet
@ A3	11 July 2023	13







No. 37 North Windows 9am



No. 37 North Windows 10am



No. 37 North Windows 1pm



No. 37 North Windows 4pm



North

>A Level 1, 95 Cronulla Street, Cronulla NSW 2230
 >ABN 86 660 152 198 >T 02 9527 7459
 >E architect@couvaras.com >W www.couvaras.com Nominated Architect: Peter Couvaras Reg No.7344

Figured dimensions only to be used. Do not scale off draw Any discrepancies to be verified on site with architect.



No. 37 North Windows 11am



No. 37 North Windows 12pm





Issue	Description	Date	SECTION 4.56
Y	S4.55 Issue	09/08/23	
٩A	Client Review	18/01/24	APPLICATION
AB	Client Review	29/01/24	
	Client Review	30/01/24	
AD	Client Review	11/03/24	



>ARCHITECTS





		Project	21004
grams - Sheet 2		Issue	Issue AD
St, Randwick		Sheet	_
	11 July 2023	1	D





1. Construction Management - DA Scale 1:200





Erosion and sediment control measures: 1 minimise disturbance, 2 diversion devices, 3 sediment barriers, 4 secure stockpiles, 5 other containments, 6 early stormwater connection, 7 controlled access point.







Managamant Plan		Project 21004
		Issue Issue AD
St, Randwick		Sheet
@ A3	11 July 2023	17









Sheet Metal Roofing -Colourbond 'Astro'

- CB



Metal Roofing Profile -Lysaught Klip Lok or similar



Light Face Brickwork -Austral "Honed Concrete" or similar - Msn02



White Rendered Slab Edges - Ren01



Timber Look Aluminium Batten Screens -Covet Everart 'Neikiddo Moku' or similar - Sc01

North

Drawing Name Materials & Fi
33-35 Church St
Scale @ A3

Issue	Description	Date	SECTION 4.56
Y	S4.55 Issue	09/08/23	
AA	Client Review	18/01/24	APPLICATION
AB	Client Review	29/01/24	
AC.	Client Review	30/01/24	
AC AD	Client Review	11/03/24	

Figured dimensions only to be used. Do not scale off drawi Any discrepancies to be verified on site with architect. >ARCHITECTS

>A Level 1, 95 Cronulla Street, Cronulla NSW 2230
 >ABN 86 660 152 198 >T 02 9527 7459
 >E architect@couvaras.com >W www.couvaras.com Nominated Architect: Peter Couvaras Reg No.7344



1. Refer to Cover Sheet 00 for current building facade. Photomontage from original Oct 2021 submission has been provided for reference only. Refer to elevations for exact locations of finishes







Bifold privacy screening

Frameless Galss Balustrade - GB01



Aluminium Framed Doors &



**Feature Planter Boxes** 

Project	21004
ssue	Issue AD
Sheet	
19	
5	ssue





	Issue	Description	Date
	AD	Client Review	11/03/24
	-		
1	$\mathbf{C}$		
	<b>~</b>		

SECTION 4.56 APPLICATION	



 >A Level 1, 95 Cronulla Street, Cronulla NSW 2230
 >ABN 86 660 152 198 >T 02 9527 7459
 >E architect@couvaras.com >W www.couvaras.com Nominated Architect: Peter Couvaras Reg No.7344

Figured dimensions only to be used. Do not scale off drawing: Any discrepancies to be verified on site with architect. Drawing Name Street View 33-35 Church St, Randwick Scale @ A3





















Geotechnical Investigation Report 33 - 35 Church Street, Randwick NSW



## **APPENDIX B**

Borehole / DCP Logs (3 Sheets)

**Borehole Log Report** Hole ID. BH1 geo-environmen Hole Depth: 1.30 m Sheet: 1 of 1 Project Number G21095RAN

Project Name:	Geotechnical Investigation	Project	Number:	G21095RAN	
 Location / Site:	33 - 35 Church Street, Randwick NSW	SW Client:		Siew Leng Kiang	
Drilling Company:	Geo Environmental Engineering	Date Started:	30-SEP-21	Ground Level:	RL69.74m
Drill Method:	Hand Auger	Date Completed:	30-SEP-21	Latitude:	

ment:	Manua

Geo Environmental Engineering Pty Ltd

82 Bridge Street

Lane Cove NSW 2066 T 02 9420 3361

(approx)

Equipment: Manual Longitude:						
Method Water Level Depth (m) RL (m) Graphic Log	Material Description	Consistency / Density Moisture	Sampli / Test ID No.	es s DCP blows/100mm	- Observations / Comments	
S2 and S0mm Handauger (crowbar	Surface: Front Lawn SAND trace Silt- dark brown, fine to medium grained, roots. SAND- becoming grey brown, fine to medium grained. becoming brown white. Iron indurated sandstone (weathered crust)- red brown, fine to coarse grained. Clayey SAND- orange white, fine to coarse grained.	Very loose     m       loose     m       dense     m       loose to medium dense     m to	ZZ300921-01 0.10-0.20m ZZ300921-02 0.50-0.60m		* 1.35m DCP Bouncing	
Moisture     Additional Comments       D     Dry       Dp     Damp       SM     Slightly Moist       M     Moist       VM     Very Moist       W     Wet       Sd     Saturated						

Geo Environmental Engineering Pty Ltd BH₂ Hole ID. 82 Bridge Street Hole Depth: 2.00 m Lane Cove NSW 2066 T 02 9420 3361 1 of 1 Sheet: **Geotechnical Investigation** Project Number: G21095RAN Project Name: Location / Site: 33 - 35 Church Street, Randwick NSW Client: Siew Leng Kiang Drilling Company: Geo Environmental Engineering Date Started: 30-SEP-21 Ground Level: RL70.31m (approx) Drill Method: 30-SEP-21 Hand Auger Date Completed: Latitude: Equipment: Manual Longitude: -----Samples / Tests **USCS Symbol** Material Type Consistency / Density Гog Water Level Ē Material Description Observations / Comments Graphic L Moisture Method Depth ( £ DCP ЧĽ blows/100mr Surface: Rear Lawn 5 10 15 SAND trace Silt- dark brown, fine to medium grained, very loose m roots. SM 70.0 SAND- becoming grey brown, fine to medium grained. very loose m to loose becoming grey white. Aeolian 85mm Handauger SP 1.0 69. SAND- yellow brown, weakly cemented. loose to m medium dense SP Clayey SAND- orange white, fine to coarse grained, medium m with bands ironstone. dense RS sc GEE.GDT 4-10-21 9:38:39 AM 2.0 Refusal at 2.00m medium Practical refusal on ironstone dense to dense 68.0 2.35m DCP bouncing DAVIES BH LOG G21095RAN.GPJ Moisture Additional Comments D Dry Dp SM Damp Slightly Moist M VM Moist Very Moist w Wet Sd Saturated Matthew Kilham Logged By: Date: 30-Sep-21 Checked By: Stephen McCormack Date: 01-OCT-21

ШIJЭ

**Borehole Log Report** 

Geo Environmental Engineering 82 Bridge Street Lane Cove NSW 2066 E info@geoenvironmental.com.au



## Log Report Legend



Geotechnical Investigation Report 33 - 35 Church Street, Randwick NSW



## **APPENDIX C**

Lab Report (7 Sheets)

G21095RAN-R01F Rev 2



Geo-Environmental Engineering Pty Ltd 82 Bridge St Lane Cove NSW 2066



NATA Accre Accreditatio Site Number Accredited for c

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

ALL INVOICES Stephen McCormack

Report Project name Project ID Received Date 829161-S RANDWICK SI G21095RAN Oct 01, 2021

Client Sample ID			G300921RAN- 01	G300921RAN- 02	G300921RAN- 03
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-Oc03290	S21-Oc03291	S21-Oc03292
Date Sampled			Sep 30, 2021	Sep 30, 2021	Sep 30, 2021
Test/Reference	LOR	Unit			
Chloride	10	mg/kg	< 10	< 10	< 10
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	19	< 10	< 10
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.4	6.6	5.8
Resistivity*	0.5	ohm.m	530	1700	1300
Sulphate (as SO4)	10	mg/kg	< 10	< 10	< 10
% Moisture	1	%	6.2	4.1	15



## Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Sydney	Oct 07, 2021	28 Days
- Method: In-house method LTM-INO-4270 Anions by Ion Chromatography			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Oct 07, 2021	7 Days
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Oct 07, 2021	7 Days
- Method: LTM-GEN-7090 pH by ISE			
Sulphate (as SO4)	Sydney	Oct 07, 2021	28 Days
- Method: In-house method LTM-INO-4270 Sulphate by Ion Chromatograph			
% Moisture	Sydney	Oct 01, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

Date Reported: Oct 07, 2021

	Environ
fins	
euro	

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Perth 46-48 Banksia Road Weishpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370						
	Newcastle Nayfield East NSW 2304 Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Stie # 25079						
	Brisbane Dir Smalwood Place Murarie OLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794						
urofins Environment Testing Australia Pty Ltd BN: 50 005 085 521	Metbourne         Sydney         Brisbane         Newcastle           I Montersy Road         I V21 Smallwood Place         4/32 Industrial Drive           I Montersy Road         Murarie OLD 4172         Mayrield East NSW 2304           Anone: +61 3 8564 5000         Lane Cove West NSW 2066         Phone: +61 7 3902 4600         PO Box 60 Wickham 2293           AhTA # 1261 Site # 1254         Phone: +61 2 9900 8400         NATA # 1261 Site # 20794         Phone: +61 2 4968 8448						
Eurofins Environment T ABN: 50 005 085 521	Melbourne Sydney 6 Montery Road Dandenong South VIC 3175 16 Mars Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove West NATA # 1261 Site # 1254 Phone : +61 2 99 NATA # 1261 Site # 1261 Sit						
nment Testing							

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

**Eurofins Environment Testing NZ Limited** 

NZBN: 9429046024954

Company Name:	Geo-Environmental Engineering P/L	Order No.:		Received:	Oct 1, 2021 3:12 PM
Address:	82 Bridge St	Report #:	829161	Due:	Oct 7, 2021
	Lane Cove	Phone:	02 9592 0218	Priority:	3 Day
	NSW 2066	Fax:	02 9519 9140	Contact Name:	ALL INVOICES Stephen
Project Name:	RANDWICK SI				
Project ID:	G21095RAN			Eurofins Analytical S	Eurofins Analytical Services Manager : Andrew Black
					איויכפו ט

Pre	Project Name: Project ID:	RANDWICK SI G21095RAN	SI				
		Sai	Sample Detail			Aggressivity Soil Set	Moisture Set
Melb	Melbourne Laboratory - NATA # 1261 Site # 1254	ry - NATA # 120	51 Site # 125	4			
Sydr	Sydney Laboratory - NATA # 1261 Site # 18217	- NATA # 1261 \$	Site # 18217			×	×
Brisl	Brisbane Laboratory - NATA # 1261 Site # 20794	/ - NATA # 1261	Site # 20794	_			
Mayl	Mayfield Laboratory - NATA # 1261 Site # 25079	- NATA # 1261	Site # 25079				
Pert	Perth Laboratory - NATA # 2377 Site # 2370	IATA # 2377 Sit	e # 2370				
Exte	External Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
-	G300921RAN- 01	Sep 30, 2021		Soil	S21-Oc03290	×	×
2	G300921RAN- 02	Sep 30, 2021		Soil	S21-Oc03291	×	×
ю	G300921RAN- 03	Sep 30, 2021		Soil	S21-Oc03292	×	×
Test	Test Counts					3	3

Page 3 of 6



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

### Units

Units		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### Terms

Terris	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



## **Quality Control Results**

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank							-	-	
Chloride			mg/kg	< 10			10	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		uS/cm	< 10			10	Pass	
Sulphate (as SO4)			mg/kg	< 10			10	Pass	
LCS - % Recovery									
Chloride			%	90			70-130	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		%	101			70-130	Pass	
Resistivity*			%	101			70-130	Pass	
Sulphate (as SO4)			%	87			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S21-Oc02913	NCP	%	90			70-130	Pass	
Sulphate (as SO4)	S21-Oc02913	NCP	%	89			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S21-Oc02903	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-Oc03234	NCP	uS/cm	20	22	11	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S21-Oc03234	NCP	pH Units	5.1	5.2	<1	30%	Pass	
Resistivity*	S21-Oc03234	NCP	ohm.m	510	460	11	30%	Pass	
Sulphate (as SO4)	S21-Oc02903	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
% Moisture	S21-Oc03234	NCP	%	5.2	5.0	5.0	30%	Pass	



## Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

### Authorised by:

Emma Beesley Charl Du Preez Analytical Services Manager Senior Analyst-Inorganic (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Eurofins Environment Testing Australia Pty Ltd	Received By	Laboratory Use Only Received By	Method of Shipment Courier (#		20	19	18	17	16	15	14	13 G300921RAN-	12 G20092 (KAN-0)	" G3009X RAND	Na Client Sample ID	Quote ID Nº	Purchase Order 6	Special Directions Fraphan @ ge	EmArc.	Phone Nº 043 (4	Contact Name Stephon 1		Address Kngwood Ng	company Geo Env	CHAIN OF CUS
		Contre Turner	) Hand Delivered	Total Counts							, , , , , , , , , , , , , , , , , , , ,	1-03 30/9 SOIL	7105 6/02 20-	4N-01 30/9 SOLL	Sampled Matrix Date/Time Solid (S) ddimmay hh mm Water (W)		metals an	stepton @ geo environmented - Area	alyses			Interred*		Environmental Pro	CHAIN OF CUSTODY RECORD
Submission of samples to the laboratory will be	SYD   BNE   MEL   PER   ADL   NTL   DRW	SYD JONE   MEL   PER   ADL   NTL   DRW	ad Postal Name									×	×	X	AGRES				4				Dwick	Project Ne GZ10951	Sydney Laboratory Unit F3 Bid.F 16 Mars Road Lane Cove West NSW 2066 02 9900 8400 EnviroSampleNSW@eurofink.com
deemed as acceptan	Signature	Signature	North Killig m Signature																				SZ . ESdat EGuils alc	RAN Project Manager Stephen	Brisbane Laboratory Unit 1 21 Smallwood Pilece Murame CLD 4172 07 3902 4600 EnviroSampleCLD@eurofins.com
on of Eurofins   Environment Testing Standard Terms and Conditions unless agreed otherwise. A copy is available on request.	Date	Date 1/10	· M. Kulha	A . A													Nesti-							hey M Connack	Perth Laboratory Unit 2 51 Leach Highway Kewdale WA 6105 09 9251 9600 EnvinSampleWA@eurofins.com
greed otherwise. A copy is available on request	Time	Time 3:12	Date												200 4 500	250mL F 250mL F 125mL F mL Ami 10mL VC 0mL PF/ (Glass tos AS49	Plastic Plastic Der Glas DA vial AS Bottl Dr HDPI	e E)		Containers Change container type & sizo if necessary,	Email for Results AS ABOVE	Email for Invoice stephen @ g	Handed over by Matthew	Sampler(s)	
. 0 C	Report Ne a 70116	Temperature 27.27	Time												Sample Comments / Dangerous Goods Hazard Warning	Other()	2 days+	□ Overnight (reporting by 9am)+ □ Same day+ □ 1 day+	+Surcharge will apply	Required Turnaround Time (TAT) Default will be 5 days if not ticked.		stephen @ geven i convented. cons de	w Kilherm		Melbourne Laboratory 6 Monterry Road Dandenong South VIC 3175 03 8564 5000 EnviroSampleVic@eurofins.com